HETEROPHYLOL, a PHENOLIC COMPOUND WITH NOVEL SKELETON FROM ARTOCARPUS HETEROPHYLLUS

Chun-Nan Lin* and Chai-Ming Lu

Natural Products Research Center, Kaohsiung Medical College, Kaohsiung, Taiwan 807, R.O.C.

Abstract: From the root bark of Artocarpus Heterophyllus, a novel phenolic compound, heterophylol, was isolated and determined by spectroscopic methods.

In previous papers, $^{1.5}$ we reported a series of prenylflavonoids from the root bark of A. communis and A. heterophyllus. In continuation of this work, we describe herein the structure elucidation of a novel phenolic compound, heterophylol(1), obtained from the root bark of A. heterophyllus.

The root bark of *A. heterophyllus* was collected at Ping-Tung Hsien, Taiwan, R.O.C. during July, 1992. The acetone extract was chromatographied over silica gel. Elution with cyclohexane-CHCl₃ yielded 1 in addition to two 2',4',6'-trioxygenated flavanones, heteroflavanone A and hetero-flavanone B.⁵

Compound 1, colorless needles, mp 217-218°C, $[\alpha]_D^{24}$ -3° (c 0.1, acetone), exhibits IR bands at 3420, 1620 and 1600 cm⁻¹. High resolution MS revealed a [M] ⁺ at m/z 408.2318 which corresponded to the molecular formula C₂₆ H₃₂O₄. The UV spectrum showed absorption maxima at 204 (4.82), 228 (sh)(4.29) and 284 nm (3.94), which indicated an unconjugated aromatic system. ⁶⁻⁷ Its ¹HNMR(1D and 2D) spectra defined the following substructures: a pentasubstituted and a trisubstituted benzene rings (A and B), a γ , γ -dimethylallyl group located at an aromatic ring, two methines connected to each other between two methylenes and 2 methyl groups attached to a quaternary carbon. The ¹³CNMR and ¹³C-¹H COSY spectrum of 1 showed signals of all the 26 carbons and their corresponding protons in the molecule including the signals of the structures mentioned above, two methoxyl and the quaternary carbon of [(Me)₂C<_O] (Table 1).

In addition to the above results, information from long range ${}^{13}C^{-1}HCOSY$ spectrum of 1 (Fig. 1) and by comparing the ${}^{13}CNMR$ data of Aring with those of tetrahydronaphthalene ⁸ established its substitution pattern. The long range ${}^{13}C^{-1}HCOSY$ spectrum (Fig. 1) data of 1 also confirmed the substitution pattern of the B ring and established the connectivity of the 4 aliphatic carbons and the moiety of $[(Me)_2C<_O]$ as shown in Fig. 1. This structure was supported by the fragmentation pattern (scheme 1) in EI-MS of 1.^{9,10} The stereochemistry of H-6 and H-13 was reasoably assigned to be diaxial for $J_{6,13} = 12$ Hz.

Fig. 1 ¹H-¹³C long range coupling of 1

. .

Table 1. ¹H and ¹³CNMR spectra of 1*(Acetone-D6)

No C	_0 ¹³ Cppm_	_ð ¹ Hppm_r	mult(J,Hz)	No C d	6 ¹³ Cppm	δ ¹ Hppm	mult(J,Hz)
1	119.2			14	25.2	2.21; 2	2.92 dd(12,16); (5,16)
2	155.9 ^a			15	1 29.7		
3	93.1	6.55	S	16	116.0		
4	156.1 ^a			17	116.7		
5	33.6	2.32;3.53	dd(12,16);dd(5,16)	18	154.1		
6	31.9	2.61	dt(5,12)	19	18.4	1.16	S
7	127.4	7.18	d(8.5)	20	27.0	1.43	S
8	107.8	6.43	dd(2.5,8.5)	21	23.5	3.34	d(6.9)
9	156.7	8.15	S	22	123.5	5.03	m
10	103.4	6.26	d(2.5)	23	135.6		
12	76.5			24	17.0	1.80	S
13	43.2	1.65	dt(5,12)	25	24.9	1.64	s
OMe	54.6: 55	5.2 3.83: 3.84	s				

*The number of directly attached protons to each individual carbons was verified with DEPT pulse sequence; ^aValues may be reversed

REFERENCES

- 1. C. N. Lin and W. L. Shieh Phytochemistry, 30, 1669(1991).
- 2. W. L. Shieh and C. N. Lin Phytochemistry, 31, 364(1992).
- 3. C. N. Lin, W. L. Shieh and T. T. Jong Phytochemistry, 31, 2563(1992).
- 4. C. N. Lin and W. L. Shieh Phytochemistry, 31, 2922(1992).
- 5. C. M. Lu and C. N. Lin Phytochemistry, accepted for publication.
- 6. K. S. Saini and S. Ghosal Phytochemistry, 23, 2415(1984).
- J. Ikuta(nee Matsumoto), Y. Hano, T. Nomura, Y. Kawakami and T. Sato <u>Chem. Pharm.</u> Bull., 34, 1968(1986).
- K. Biemann "<u>Tables of Spectral Data for Structure Determination of Organic Compounds</u>" Cambridge, MA 02139/U.S.A., (a) C105; (b) M210(1989).
- 9. S. E. Drewes, M. J. Mashimbye, J. S. Field and N. Ramesar Phytochemistry, 30, 3490 (1991).
- K. Biemann "<u>Tables of Spectral Data for Structure Determination of Organic Compounds</u>" Cambridge, MA 02139/U.S.A., M210(1989).

(Received in Japan 25 January 1993; accepted 9 August 1993)